Generation process of magnetic noise and vibrations

This technical bibliography comes from EOMYS technical training on the physical generation process of electromagnetic noise and vibrations. It is regularly updated based on EOMYS consulting experience in the assessment and mitigation of magnetic noise problems in electrical machines and drives.

Electromagnetic noise and vibration levels must be taken into account starting from the conceptual design phase of electric machines. High magnetic noise levels can be produced by different types of excitations (e.g. radial, tangential, axial forces) and different transfer paths (e.g. inner Vs outer borne noise, air-borne Vs structure-borne noise). This different paths can be analyzed using numerical simulation with Manatee e-NVH software for an efficient analysis of the noise mechanism.

For more information on EOMYS technical training offer, please visit


[B2] J. Le Besnerais, P. Pellerey, V. Lanfranchi « Bruit acoustique d’origine magnétique dans les machines synchrones », Techniques de l’Ingénieur (in French), 2013

[B3] M. Bekemans, Modélisation des machines électriques en vue du contrôle des efforts radiaux, PhD Dissertation

[B4] Annabel Shahaj, Mitigation of vibration in large electrical machines, PhD Dissertation, 2010

[B5] M. Valavi, A. Nysveen, S. Member, R. Nilssen, R. D. Lorenz, and T. Rølvåg, “Influence of Pole and Slot Combinations on Magnetic Forces and Vibration in Low-Speed PM Wind Generators,” no. c, pp. 1–11, 2013.

[B6] A. Belahcen, “Magnetoelasticity, magnetic forces and magnetostriction in electrical machines, Ph.D. dissertation, Helsinki Univ. Tech., Espoo, Finland, 2004”

[B7] L Laftman “The contribution to noise from magnetostriction and PWM inverter in an induction machine” PhD dissertation, University of Lund, 1995

[B8] Soedel, Vibrations of Shells and Plates, Third Edition, Marcel Dekker, 2004

[B9] J. LE BESNERAIS, Reduction of audible noise due to magnetic forces in PWM-supplied induction machines – low-noise design rules and multiobjective optimization, PhD thesis, Ecole Centrale Lille, France, 2008

[B10] K. A. Fonteyn et al., Contribution of Maxwell Stress in Air on the Deformations of Induction Machines, Journal of Electrical Engineering & Technology Vol. 7, No. 3, pp. 336~341, 2012

[B11] Holopainen, Electromechanical interaction in rotor dynamics of cage induction motors, PhD Dissertation, Helsinki University of Technology, 2004

[B12] Braunisch, D.; Ponick, B.; Bramerdorfer, G., “Combined Analytical–Numerical Noise Calculation of Electrical Machines Considering Nonsinusoidal Mode Shapes,” Magnetics, IEEE Transactions on , vol.49, no.4, pp.1407,1415, April 2013

[B13] Jian Li, Investigation into Reduction of Vibration and Acoustic Noise in Switched Reluctance Motors in Radial Force Excitation and Frame Transfer Function Aspects

[B14] Mechanism of Noise Generation on Outer Rotor Motor, Kazumasa IKEDA1; Junichi SEMURA2; Tsukasa OHZAWA3, INTERNOISE 2014

[B15] Large-Band Reduction of Magnetic Vibrationsof Induction Machines with “Breaking-of-Impedance” Interface, L. Durantay, IEEE Trans on Ind App, 2000

[B16] Tan-Kim, A.; Lanfranchi, V.; Legranger, J.; Palleschi, F.; Redon, M., “Influence of temperature on the vibro-acoustic behavior of claw-pole alternators,” in Electrical Machines (ICEM), 2014 International Conference on , vol., no., pp.1628-1634, 2-5 Sept. 2014

[B17] S. J. Sung Vi b r a t i o n a n d N o i s e i n a H D D S p i n d l e M o t o r A r i s i n g f ro m t h e A x i a l U M F R i p p l e

[B18] Gyu-Hong Kang,The Noise and Vibration Analysis of BLDC Motor D u e t o A s y m m e t r i c a l P e r m a n e n t – M a g n e t Overhang Effects

[B19] A. Arkkio, Electromagnetic damping of stator vibrations in a cage induction motor

[B20]  Martti Verho and Paul Klinge, Sound radiation from vibrating cooling ribs

[B21] Design of IPMSM Applying V-Shape Skew Considering Axial Force Distribution and Performance Characteristics According to the Rotating Direction

[B22] Garvey, The response of electrical machine stators to magnetic forcing

[B23] Boesing, « Acoustic modeling of electrical drives – noise and vibration synthesis based on force response superposition”, RWTH University, Aachen, 2013

[B24] Bernard, R., Bigot, P., Dubas, F., Chamagne, D., & Espanet, C. (n.d.). Consideration of Radial Magnetic Forces in Brushless DC Motors.

[B25] Analysis of Force and Torque Harmonic Spectrum in an Induction Machine for Automotive NVH Purposes, Inigo Garcia, Chalmers 2016

[B26] Akira Shiba

[B27] P. Kotter, Efficient Noise-Vibration-Harshness Modelling of Servo- and Traction Drives, 2016

[B28] C. Bruzzese and E. Santini, “Study of cage torsional resonance failures in inverter-fed fabricated-cage induction motors used in traction drives,” 2016 IEEE International Power Electronics and Motion Control Conference (PEMC), Varna, 2016, pp. 650-657

[B29] M. Kirschneck,, « Effects of Magneto-Mechanical Coupling on Structural Modal Parameters”

[B30] A. Wang et al., « On the Material and Temperature Impacts of Interior Permanent Magnet Machine for Electric Vehicle Applications”

[B31] Y. Yu et al., “Incline Unbalanced Magnetic Pull Induced by Misalignment Rotor in PMSM,” in IEEE Transactions on Magnetics, vol. 49, no. 6, pp. 2709-2714, June 2013.

[B32] J. Y. Kim, S. J. Sung and G. H. Jang, “Characterization and Experimental Verification of the Axial Unbalanced Magnetic Force in Brushless DC Motors,” in IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 3001-3004, Nov. 2012.

[B33] S.L. Nau, B.C. Bork, H.L.V. dos Santos, N. Sadowski, R. Carlson, The influence of the frame and windings on the natural frequencies of stator of induction motors, submitted to IEEE, 2006.

[B34] P. Pillay and W. Cai, An investigation into vibration in switched reluctance motors, IEEE Trans. Ind. Applicat. 35, 1999.

[B36] J. Sun, Q. Zhan, S. Wang and Z. Ma, A novel radiating rib structure in switched reluctance motors for low acoustic noise, IEEE Trans. Magn. 43(9), 2007.

[B37] Tan-Kim, A. (2015). Contribution à l’étude du bruit acoustique d’origine magnétique, PhD Thesis, Université de Compiègne, France

[B38] Tetreault, A., Zhengping, Z., & Tétreault, A. (2013). End-winding vibration monitoring: Pivotal in preventing major damage on a large turbo-generator. 2013 IEEE Electrical Insulation Conference, EIC 2013, (June), 1–6.

[B39] L. Naranpanawe and C. Ekanayake, “Finite element modelling of a transformer winding for vibration analysis,” 2016 Australasian Universities Power Engineering Conference (AUPEC), Brisbane, QLD, 2016, pp. 1-6.

doi: 10.1109/AUPEC.2,,016.7749344

[B40] P. Shuai and J. Biela, “Investigation of acoustic noise sources in medium frequency, medium voltage transformers,” 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, 2014, pp. 1-11.

doi: 10.1109/EPE.2014.6910949

[B41]  Investigations of the audible noise of inductors with respect to different ferromagnetic materials, Terörde, Gerd; Schneider, Jürgen; Hameyer, Kay, COMPEL: Int J for Computation and Maths. in Electrical and Electronic Eng., Volume 18, Number 4, 1999, pp. 647-655(9)

[B42] Tim Burress, “Benchmarking EV and HEV Technologies”, 2015, ORNL

[B43] Weiser, B., Pfützner, H., & Anger, J. (2000). Relevance of Magnetostriction and Forces for the Generation of Audible Noise of Transformer Cores, 36(5), 3759–3777.

[B44] Penin, R., Lecointe, J.-P., Parent, G., Brudny, J.-F., & Belgrand, T. (2013). Grain Oriented Steel Rings for an Experimental Comparison of Relative Magnetostriction and Maxwell ’ s Forces Effects. IEEE Transactions on Industrial Electronics, 61(c), 1–8.

[B45] Hilgert, T., Vandevelde, L., & Melkebeek, J. (2005). Application of magnetostriction measurements for the computation of deformation in electrical steel. Journal of Applied Physics, 97(10), 10E101.

[B46] Vandevelde, L., Gyselinck, J., Wulf, M. A. C. De, Melkebeek, J. A. A., & Member, S. (2004). Finite-Element Computation of the Deformation of Ferromagnetic Material Taking Into Account Magnetic Forces and Magnetostriction, 40(2), 565–568.

[B47] Ali Emadi, Kauskik Rajashekara, Sheldon Wiliamson and Srdjan Lukic,Topological Overview of Hybrid Electric and Fuel Cell Vehicular Power System Architectures and Configurations, IEEE Transactions on Vehicular Technology, Vol. 54, No. 3, May 2005


[B49] Rossi, M., & Le Besnerais, J. (n.d.). Vibration Reduction of Inductors under Magnetostrictive and Maxwell Forces Excitation. IEEE Transactions on Magnetics, (99), 1–7.

[B50] J.-B. Dupont, P. Bouvet, « Noise radiated by an electrical powertrain: multiphysical simulation”, Congrès Français de Mécanique, 2013

[B51] Philipp Kotter1,2, Wolfgang Bischof1, Ralph Kennel, Oliver Zirn, Konrad Wegener, “Efficient noise-vibration-harshness-modeling for squirrel-cage induction drives in EV applications”, IEDMC Proceedings, 2017

[B52] P. Shuai and J. Biela, “Investigation of acoustic noise sources in medium frequency, medium voltage transformers,” 16th European Conference on Power Electronics and Applications (EPE’14-ECCE Europe), pp. 1–11, Aug 2014

[B53] Jean LE BESNERAIS, Pierre PELLEREY, Vincent LANFRANCHI, Michel HECQUET, « Bruit acoustique d’origine magnétique dans les machines synchrones », Techniques de l’Ingénieur, 2013

[B54] Michael Shwarzer, « Structural Dynamic Modeling and Simulation of Acoustic Sound Emissions of Electric Traction Motors”, PhD thesis, 2017

[B55] P. Pellerey, “PhD thesis

[B56] Chi Ho Kang, “Axial Unbalanced Magnetic Force in a Permanent Magnet Motor Due to a Skewed Magnet and Rotor Eccentricities”, IEEE Trans Mag

[B57] Fei, W., & Zhu, Z. Q. (2013). Comparison of cogging torque reduction in permanent magnet brushless machines by conventional and herringbone skewing techniques. IEEE Transactions on Energy Conversion, 28(3), 664–674.

[B58] Jang, G. H., Yoon, J. W., Ro, K. C., Park, N. Y., & Jang, S. M. (1997). Performance of a brushless DC motor due to the axial geometry of the permanent magnet. IEEE Transactions on Magnetics, 33(5 PART 2), 4101–4103

[B59] Emadi, A., Jiang, J. W., Dadkhah, H., Yang, Y., Sathyan, A., Bilgin, B., … Emadi, A. (2015). Rotor skew pattern design and optimisation for cogging torque reduction. IET Electrical Systems in Transportation, 6, 1–10.

[B60] Mengjia, J., Weizhong, F., & Shen, J. (2013). Investigation of Axial Magnetic Force in Permanent Magnet Synchronous Machines with. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 28(11).

[B61] W. Liang, P. C. K. Luk and W. Fei, “Investigation of Magnetic Field Interharmonics and Sideband Vibration in the FSCW IPMSM Drive With the SPWM Technique,” in IEEE Transactions on Power Electronics, vol. 33, no. 4, pp. 3315-3324, April 2019.

[B62] J. Zou, H. Lan, Y. Xu and B. Zhao, “Analysis of Global and Local Force Harmonics and Their Effects on Vibration in Permanent Magnet Synchronous Machines,” in IEEE Transactions on Energy Conversion, vol. 32, no. 4, pp. 1523-1532, Dec. 2017.

[B63] Mehrgou, M., Garcia de Madinabeitia, I., Graf, B., Zieher, F. et al., “NVH Aspects of Electric Drives-Integration of Electric Machine, Gearbox and Inverter,” SAE Technical Paper 2019-01-1556, 2019,

[B64] W. Deng et al, “Investigation of vibration and noise characteristics in axial flux permanent magnet synchronous motor with different magnet shapes”, ASA Journal, 2016

[B65] W. Deng et al, “Analytical Modeling of the Electromagnetic Vibration and Noise for an External Rotor Axial Flux in-Wheel Motor”, IEEE Trans Ind Elec, 2017

[B66] P. Kotter, D. Morisco, M. Boesing, O. Zirn and K. Wegener, “Noise-Vibration-Harshness-Modeling and Analysis of a Permanent-Magnetic Disc Rotor Axial-Flux Electric Motor,” in IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1-4, March 2019, Art no. 8101604.

[B67] W. Wang, “Study on the Characteristics of Electromagnetic Noise of Axial Flux Permanent Magnet Synchronous Motor”, Hindawi journal, 2014

[B68] T. Ran Lin, Characteristics of Modal Sound Radiation of Finite Cylindrical Shells, Journal of Vibration and Acoustics, 2011


[B70] P. Millithaler. (2013). Dynamic behaviour of electric machine stators : modelling guidelines for efficient finite-element simulations and design specifications for noise reduction. PhD thesis

[B71] F.V. Bombardi et al, « Effects of unbalanced magnetic pull on NVH performance of an electric drivetrain », SAE 2018

[B72] M. Michon, « Electromechanical interactions in the design of integrated EV drivetrains », Romax presentation, Oct 2016

[B73] L. L. Beranek, “Noise and vibration control engineering“, 2005

[B74] Chauvicourt, F. (2018). Vibro-acoustics of rotating electric machines: Prediction, validation and solution.

[B75] Schnell, Michael, and Frank Gauterin. “Acoustic effects of the coolant mass flow of an electric machine of a hybrid drive train.” Automotive and Engine Technology 4 (2019): 189-193.