Numerical simulation of magnetic noise and vibrations

This technical bibliography comes from EOMYS technical training on the numerical simulation of magnetic noise and vibrations. It is regularly updated based on EOMYS development experience of Manatee software, the only simulation and analysis tool specialized on e-NVH.

Virtual prototyping of electrical machines and drives reduces development time and costs. However, the numerical simulation of variable speed magnetic noise and vibrations requires coupling multiphysic models with different accuracy / speed tradeoffs depending on design stage as done in Manatee software. Special algorithms must be used to reduce computing time and provide physical reliable outputs.

For more information on EOMYS technical training offer, please visit

[R1] M. Krishnamurthy, B. Fahimi, “Qualitative analysis of force distribution in a 3-phase Permanent Magnet Synchronous Machine,” Electric Machines and Drives Conference (IEMDC) , 2009,

[R2] J. Roivainen, “Unit-wave response-based modeling of electromechanical noise and vibration of electrical machines”, PhD Thesis, 2009.

[R3] M. Van Der Giet, D. Franck, R. Rothe, and K. Hameyer, “Fast-and-easy acoustic optimization of PMSM by means of hybrid modeling and FEM-to-measurement transfer functions”, 2010.

[R4] M. Boesing, T. Schoenen,  K.A Kasper and R.W De Doncker, “Vibration Synthesis for Electrical Machines Based on Force Response Superposition”, IEEE Trans. Mag, 2010,

[R5] J. Le Besnerais, P. Pellerey, V. Lanfranchi and M. Hecquet, « Bruit acoustique d’origine magnétique dans les machines synchrones », Techniques de l’Ingénieur, 2014.

[R6] A. Belahcen, “Methods of Calculating the Magnetic Forces for Vibration and Noise Analysis in Electrical Machines”, Acta Polytechnica Scandinavica, Electrical Engineering Series No 103. Finnish Academies of Technology Espoo, 2000.

[R7] N. Jahyun, K. Chiho, S. Jeongyong and J. Gunhee, « Comparison of one-way and two-way coupled analyses of electromagnetic machines considering magnetic and structural interactions”, AIP Advances, 2017.

[R8] M. Kirschneck, D.J. Rixen, H. Polinder and R.J. Van Ostayen, “Electromagnetomechanical Coupled Vibration Analysis of a Direct-Drive Off-Shore Wind Turbine Generator”, ASME, J. Comput. Nonlinear Dynam, 2015.

[R9] M. Regniez, J. Le Besnerais, Q. Souron, P. Bonneel, “Numerical simulation of structural-borne vibrations due to electromagnetic forces in electric machines – coupling between Altair Optistruct and Manatee software”

[R10] Gieras, Noise of Polyphase Electric Motors, CRC Press

[R11] G. Verez and C. Espanet, “Natural Frequencies Analytical Modeling of Small Industrial Radial Flux Permanent Magnet Motors”, 18th International Conference on Electrical Machines and Systems (ICEMS), 2015.

[R12] J.L. Coulomb, “A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness”,
IEEE Transactions on Magnetics, 1983.

[R13] F. Henrotte and K. Hameyer, “Computation of electromagnetic force densities: Maxwell stress tensor vs. virtual work principle”. JCAM, 2004,

[R14] M. Boesing, « Noise and Vibration Synthesis based on Force Response Superposition », PhD Thesis, RWTH Aachen, 2013.

[R15] F. Zidat, H. Ennassiri, «Webinar: Vibro‐acoustics Analysis for noise reduction of electric machines Example: Synchronous Machine – Flux 2D Coupling to ANSYS”, © FLUX CEDRAT, 2015.

[R16] C. McCulloch, M. Tournour, and P. Guisset, « Modal Acoustic Transfer Vectors Make Acoustic Radiation Models Practical for Engines and Rotating Machinery », LMS International, 2002.

[R17] M. Régniez, Q. Souron, P. Bonneel and J. Le Besnerais, “Numerical simulation of structural-borne vibrations due to electromagnetic forces in electric machines – coupling between Altair Optistruct and Manatee software”, 2016

[R18] F. Marion, “Magneto-vibroacoustic analysis: a new dedicated context inside Flux ®11.2” , Cedrat News, 2013

[R19]  K. Vansant, “From Tesla to Pascal, a magneto-vibroacoustic analysis linking Flux® to LMS Virtual. Lab”, Cedrat News, 2014

[R20] G. Kumar, “Noise prediction for electric motors by coupling electromagnetic and vibroacoustic simulation tools”, Proceedings of NAFEMS conference, 2014

[R21] M. Solveson, C. Rathod, M. Hebbes, G. Verma, T. Sambharam, “Electromagnetic Force Coupling in Electric Machines”, ANSYS Inc,, 2011

[R22] J. Hallal, “Études des vibrations d’origine électromagnétique d’une machine électrique : conception optimisée et variabilité du comportement vibratoire”, PhD thesis (in French), 2014

[R23] P. Pellerey, V. Lanfranchi, G. Friedrich, “Coupled Numerical Simulation between Electromagnetic and Structural Models. Influence of the Supply Harmonics for Synchronous Machine Vibrations,”
in IEEE TMag, 2012,

[R24] V. Wilow, “Electromagnetical model of an induction motor in COMSOL Multiphysics”, Master’s thesis, KTH University, Sweden, 2014

[R25] M. K. Nguyen, “Predicting Electromagnetic Noise in Induction Motors”, Master’s thesis, KTH University, Sweden, 2014

[R26] M. K. Nguyen, R. Haettel and A. Daneryd, “Prediction of Noise Generated by Electromagnetic Forces in Induction Motors”

[R27] T. Hattori, “Starting With Vibration Noise Analyses” JMAG Newsletter January, 2014.

[R28] F. Chauvicourt, C. Faria, A. Dziechciarz and C. Martis, “Infuence of rotor geometry on NVH behavior of synchronous reluctance machine,” 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, 2015, pp. 1-6.

[R29] H. Ennassiri, “Magneto-Vibro-Acoustic Analysis Linking Flux® to ANSYS® Mechanical”, 2016

[R30] M. Senousy, P. Larsen, and P. Ding, “Electromagnetics, Structural Harmonics and Acoustics Coupled Simulation on the Stator of an Electric Motor,” SAE Int. J. Passeng. Cars – Mech. Syst, 2014.

[R31] X. Ge, “Simulation of Vibrations in Electrical Machines for Hybrid-electric Vehicles”, 2014

[R32] P. Lombard, “Webinar: Summary of Vibro-acoustic Coupling”, © FLUX CEDRAT,  2017.

[R33] D. Meeker, “Finite Element Method Magnetics” FEMM User Manual, 2015.

[R34] D. Twyman, “Webinar: ANSYS Maxwell Coupling”, 2016.

[R35] F. Lin, S. Zuo, W. Deng and S. Wu, “Modeling and Analysis of Electromagnetic Force, Vibration, and Noise in Permanent-Magnet Synchronous Motor Considering Current Harmonics,”
in IEEE Trans. Ind. Elec, 2016.

[R37] Z.Q Zhu and D. Howe,“Electromagnetic noise radiated by brushless permanent magnet DC drives. 6th International Conference on Electrical Machines and Drives, 1993.

[R38] J. Le Besnerais, “Fast Prediction of Variable-Speed Acoustic Noise and Vibrations due to Magnetic Forces in Electrical Machines”, ICEM 2016,

[R39] S. Zuo, F. Lin and X. Wu, “Noise Analysis, Calculation, and Reduction of External Rotor Permanent-Magnet Synchronous Motor,” in IEEE Trans. Indus. Elec, 2015.

[R40] P. Pellerey, “Etude et Optimisation du Comportement Vibro-Acoustique des Machines Electriques, Application au Domaine Automobile”, PhD thesis, Univ. Tech. Compiègne, 2012

[R41] J. Le Besnerais, “Fast prediction of variable-speed acoustic noise due to magnetic forces in electrical machines,” ICEM, 2016.

[R42] S. Peters and F. Hetemi, « Airborne Sound of Electrical Machines using Symmetric Matrices in ANSYS 14”, ANSYS Conference

[R43] M. Van der Giet et al, “Comparison of acoustic single-value parameters for the design process of electrical machines”, Internoise 2010.

[R44] G. Verez, “Contribution à l’étude des émissions vibro-acoustiques des machines électriques. Cas des machines synchrones à aimants dans un contexte automobile », PhD thesis, University of Le Havre, 2014.

[R45] K. Balachandran, “Electric Motor Noise and Vibration simulation using Actran software”, MSC software, Nov 2016 [ppt]

[R46] D. Reeves, “From Electromagnetic Forces To Acoustics – Full Chain Analysis for Vibro-Acoustic Studies with Electromagnetic Excitations”, MSC software, 2015 [ppt]

[R47] J. Chen, Y. Ma, and R. HE, “SMFF Computation for Probe of Online Magnetic Flux Leakage Detection System with combination of ANSYS and Virtual Work Method”, In International Symposium on Mechanical Engineering and Material Science, 2016.

[R48] L. Kostetzer, F. Hetemi, and D. Gerling, “Scalable system simulation for electric drives,” in Electric Drives Production Conference (EDPC), 2011.

[R49] P. Dular and C. Geuzaine, “GetDP reference manual: The documentation for GetDP, a general environment for the treatment of discrete problems”

[R50] ME2D  User  Guide,  Cobham  Technical  Services,  Opera,  Oxford,  U.K. [Online]  Available:

[R51] FLUX3D   User   Guide,   Version   10.3.3.   [Online].   Available:

[R52] J. Otto, “Simulation of Electric Machines with ANSYS”, © CADFEM (2017). [ppt]

[R53] M, Michon, “Workshop: Romax electrical machine NVH analysis”, © ROMAX Technology (Oct. 2016). [ppt]

[R54] K. Kouumdjieff and M. Popescu, “Webinar: Solving Electric Vehicle Powertrain problems using RomaxDESIGNER and Motor-CAD”, (2017). [ppt]

[R55] A. McCloskey, X. Arrasate, G. Almandoz, X. Hernandez, and O. Salgado, “Vibro-acoustic finite element analysis of a Permanent Magnet Synchronous Machine”. EURODYN, 2014.

[R56] Owen Harris, April 2019 webinar,

[R57] A. Anderson “Electric Machine Control for Energy Efficient Electric Drive Systems”, PhD Thesis, Chalmers University, 2019

[R58] R. Pile et al, “Application Limits of the Airgap Maxwell Tensor”, CEFC 2019

[R59] Numerical Prediction of Motor Noise in a Continuous Speed Range, J. Wobbler, M. Hanke, TAE symposium Elektromagnetismus 2019, 8-9 March 2019*

[R60] D. Torregrossa, B. Fahimi, F. Peyraut and A. Miraoui, “Fast Computation of Electromagnetic Vibrations in Electrical Machines via Field Reconstruction Method and Knowledge of Mechanical Impulse Response,” in IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 839-847, Feb. 2012.

[R61] Pile, R., Devillers, E., & Le Besnerais, J. (2019). Comparison of Main Magnetic Force Computation Methods for Noise and Vibration Assessment in Electrical Machines.

 IEEE Transactions on Magnetics, 54(7), 1–13.

[R62] Parent, G., Dular, P., Ducreux, J.-P. P., & Piriou, F. (2008). Using a galerkin projection method for coupled problems. IEEE Transactions on Magnetics, 44(6), 830–833.

[R63] Farrel, P. E. Galerkin projection of discrete fields via supermesh construction. 2009. Thèse de doctorat. Imperial College London.

[R64] Liang, W. (2017). The investigation of electromagnetic radial force and associated vibration in permanent magnet synchronous machines. Cranfield University.

[R65] P. Millithaler, “Dynamic behaviou of electric machine stators – modelling guidelines for efficient finite-element simulations and design specifications for noise reduction”, 2013, PhD thesis, UFC

[R66] Michael Shwarzer, « Structural Dynamic Modeling and Simulation of Acoustic Sound Emissions of Electric Traction Motors”, PhD thesis, 2017


[R68] “Simcenter Acoustics Electric Motor Noise”, presentation, 2016

[R69] H Saucy, « Noise radiated by electric motors: simulation process and overview of the optimization approaches  », EVS 32, Lyon, 2019

[R70] J. Le Besnerais, E. Devillers « Fast calculation of the airgap flux density distribution based on subdomain and permeance magnetomotive force models of electrical machines”, ISEF 2019

[R71] Sathyan, S., Aydin, U., & Belahcen, A. (2020). Acoustic noise computation of electrical motors using the boundary element method. Energies, 13(1), 245.

[R72] De Medeiros, L. H., Reyne, G., & Meunier, G. (1998). Comparison of global force calculations on permanent magnets. IEEE Transactions on magnetics, 34(5), 3560-3563.

[R73] M. Muller Trapet, “Simulated Transfer Functions for the Auralization of Electrical Machines”, 2010


[R75] Palani, D., Azar, Z., Thomas, A., Zhu, Z. Q., & Gladwin, D. (2016, September). Modeling technique for large permanent magnet generators accounting for manufacturing tolerances and limitations. In 2016 XXII International Conference on Electrical Machines (ICEM) (pp. 452-458). IEEE.

[R76] D. E. Pinto, A. -C. Pop, G. Myrria, J. Kempkes and J. J. C. Gyselinck, “Vibration Analysis of Delta-Connected PMSMs Using Lookup Table-Based Models—Influence of the 0-Sequence Component,” in IEEE Transactions on Industrial Electronics, vol. 69, no. 7, pp. 6561-6571, July 2023, doi: 10.1109/TIE.2021.3097607.

[R77] S. . -A. Vip, J. Andresen, F. Dräger and B. Ponick, “NVH-Simulation of Permanent Magnet Synchronous Traction Drives Including Torsional Mode Shapes,” 2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 2020, pp. 1185-1191, doi: 10.1109/ICEM49940.2020.9270831.

[R78] Gong, Cheng, et al. “E-motor NVH Analysis for PWM Induced Current Ripples in EV Applications.” 2023 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2023.R79

[R79] M. Schwarzer, “Structural dynamic modelling and simulation of acoustic sound emissions of electric traction motors”, PhD Thesis, TU Darmstadt, 2017